
Motor System IC TLE956x

Infineon Technologies AG

Mar 03, 2022

HOME

1 BLDC Motor Shield with TLE9563 3

2 DC Motor Shield with TLE9562 5

3 License 7
3.1 Acronyms . 7
3.2 Related Links . 7

3.2.1 Related Products . 7
3.2.2 Related Repositories . 8
3.2.3 More . 8

3.3 BLDC Motor Shield with TLE9563 . 8
3.3.1 Pinout Diagram . 8
3.3.2 Pin Description . 9
3.3.3 Jumper settings . 9

3.4 DC Motor Shield with TLE9562 . 10
3.4.1 Pinout Diagram . 10
3.4.2 Pin Description . 10
3.4.3 Jumper Settings . 11

3.5 Library Architecture . 11
3.5.1 Core Library . 12
3.5.2 Platform Abstraction Layer (PAL) Interface . 13
3.5.3 Framework PAL . 13
3.5.4 Framework API Wrapper . 13
3.5.5 Predefined Hardware Platforms . 14

3.6 Porting Guide . 14
3.6.1 Framework PAL Implementation . 14
3.6.2 Framework API Wrapper . 14

3.7 Adaptive Gate Control (AGC) . 15
3.7.1 Example codes . 15
3.7.2 Parameter defines . 16

3.8 BLDC Motor Tuning . 17
3.8.1 Safety . 17
3.8.2 RPM Regulation . 17
3.8.3 Startup . 17

3.9 Arduino Getting Started . 17
3.9.1 Arduino Compatible Kits . 17
3.9.2 Arduino Library Installation . 18
3.9.3 Arduino API . 19
3.9.4 Arduino Examples . 24
3.9.5 Software . 25

i

3.9.6 Hardware . 25
3.9.7 Ready! . 25

Index 27

ii

Motor System IC TLE956x

Welcome to the Infineon Motor System IC TLE956x library docs!

HOME 1

Motor System IC TLE956x

2 HOME

CHAPTER

ONE

BLDC MOTOR SHIELD WITH TLE9563

BLDC SHIELD TLE9563-3QX TLE9563-3QX
BLDC motor shield user manual TLE9563-3QX Datasheet

Main Features:

• support for sensor-less brushless motors using onboard BEMF comparator

• support for brushless motors with hall-sensor (field weakening range possible)

• RPM function that keeps a desired RPM speed

• control onboard RGB LED

• platform independent C++ architecture

• various parameters configurable for adaptive gate control (AGC)

3

https://www.infineon.com/cms/en/product/evaluation-boards/bldc-shield_tle956x/
https://www.infineon.com/cms/en/product/power/motor-control-ics/bldc-motor-driver-ics/bldc-motor-system-ics/tle9563-3qx/
https://www.infineon.com/cms/en/product/evaluation-boards/bldc-shield_tle956x/#!?fileId=5546d46272e49d2a0173240cd6a32199
https://www.infineon.com/cms/en/product/power/motor-control-ics/bldc-motor-driver-ics/bldc-motor-system-ics/tle9563-3qx/#!?fileId=5546d4627883d7e00178ca35bade3876

Motor System IC TLE956x

4 Chapter 1. BLDC Motor Shield with TLE9563

CHAPTER

TWO

DC MOTOR SHIELD WITH TLE9562

DC SHIELD TLE9562-3QX TLE9562-3QX
DC motor shield user manual TLE9562-3QX Datasheet

Main Features:

• control two DC motors independently of each other

• control onboard LEDs

• platform independent C++ architecture

• various parameters configurable for adaptive gate control (AGC)

5

https://www.infineon.com/cms/en/product/evaluation-boards/dc-shield_tle956x/
https://www.infineon.com/cms/en/product/power/motor-control-ics/brushed-dc-motor-driver-ics/dc-motor-system-ics/tle9562-3qx/
https://www.infineon.com/cms/en/product/evaluation-boards/dc-shield_tle956x/#!?fileId=5546d46273a5366f0173fb81140a3b77
https://www.infineon.com/cms/en/product/power/motor-control-ics/brushed-dc-motor-driver-ics/dc-motor-system-ics/tle9562-3qx/#!?fileId=5546d4627883d7e00178ca35b1603873

Motor System IC TLE956x

6 Chapter 2. DC Motor Shield with TLE9562

CHAPTER

THREE

LICENSE

Please find the license file for this library here.

3.1 Acronyms

Short Long term
AGC Adaptive Gate Control
API Application Programming Interface
BEMF Back-Electromotive Force
BLDCM Brushless Direct Current Motor
CRC Cyclic Redundancy Check
CSA Current Sense Amplifier
FOC Field-Oriented Control
HAL Hardware Abstracted Layer
HSS High-Side Switch
PAL Platform Abstraction Layer
PWM Pulse Width Modulation
RPM Rounds per Minute
SBC System Basis Chip
SPI Serial Peripheral Interface
XFP Cross Framework Platform

3.2 Related Links

3.2.1 Related Products

• XMC1100 Boot Kit

• XMC4700 Relax Kit

• Arduino Uno Rev3

• Arduino IDE

7

https://github.com/Infineon/motor-system-ic-tle956x/blob/master/LICENSE.md
https://www.infineon.com/cms/en/product/evaluation-boards/kit_xmc11_boot_001/#ispnTab1
https://www.infineon.com/cms/en/product/evaluation-boards/kit_xmc47_relax_5v_ad_v1/
https://store.arduino.cc/arduino-uno-rev3
https://www.arduino.cc/en/software

Motor System IC TLE956x

3.2.2 Related Repositories

• Infineon Github

• XMC for Arduino

3.2.3 More

• Infineon for Makers

• Arduino

There are two PCBs available using TLE956x motor control ICs.

3.3 BLDC Motor Shield with TLE9563

3.3.1 Pinout Diagram

8 Chapter 3. License

https://github.com/Infineon
https://github.com/Infineon/XMC-for-Arduino
https://www.infineon.com/cms/en/tools/landing/infineon-for-makers/
https://www.arduino.cc/

Motor System IC TLE956x

3.3.2 Pin Description

Arduino Pin Symbol Type Function
GND GND - Ground
D2 INTN Output/digital Interrupt output of TLE956x configurable via SPI.
D3 PWM1 Input/PWM Input PWM for Phase 1
D5 BEMF_U_IO Output/digital Output of BEMF comparator for Phase 1
D6 BEMF_V_IO Output/digital Output of BEMF comparator for Phase 2
D7 BEMF_W_IO Output/digital Output of BEMF comparator for Phase 3
D8 SPI CSN Input/digital Chip select pin for SPI communication
D9 PWM 3 Input/PWM Input PWM for Phase 2
D10 PWM5 Input/PWM Input PWM for Phase 3
D11 SPI SDI Input/digital Serial Data Input from Microcontroller to TLE
D12 SPI SDO Output/digital Serial Data Output from TLE to Microcontroller
D13 SPI CLK Input/digital SPI Clock
A0 Hall C Output/digital Signal of Hallsensor C (from BLDC motor)
A1 Hall B Output/digital Signal of Hallsensor B (from BLDC motor)
A2 Hall A Output/digital Signal of Hallsensor A (from BLDC motor)
A5 CSO Output/analog Output of current sense amplifier

3.3.3 Jumper settings

For plug & play operation with the provided example code, it’s recommended to set the default jumpers:

Jumper Default Function
J1 None (only

in-/output)
In and output of the high speed CAN transceiver

J2 set 3 Jumpers Connect each High-Side-Switch of the TLE9563 with a color of the RGB LED
P1 set Connect RESET of Arduino with RSTN of TLE5963
P2 set Connect the INTN pin of TLE9563 with a pulldown to GND. This enables software

development mode.
P3 set Connect green LED with VCC1 of TLE9563 indicating chip is powered on
P4 None (only input) Connector for hall-sensor
P5 set Connect VIN of Arduino with 5V regulator on TLE9563 shield

For more information refer to the BLDC motor shield user manual and TLE9563-3QX Datasheet.

3.3. BLDC Motor Shield with TLE9563 9

https://www.infineon.com/cms/en/product/evaluation-boards/bldc-shield_tle956x/#!?fileId=5546d46272e49d2a0173240cd6a32199
https://www.infineon.com/cms/en/product/power/motor-control-ics/bldc-motor-driver-ics/bldc-motor-system-ics/tle9563-3qx/#!?fileId=5546d4627883d7e00178ca35bade3876

Motor System IC TLE956x

3.4 DC Motor Shield with TLE9562

3.4.1 Pinout Diagram

3.4.2 Pin Description

Arduino Pin Symbol Type Function
GND GND - Ground
D2 INTN Output/digital Interrupt output of TLE956x configurable via SPI.
D3 PWM1 Input/PWM Input PWM for Phase 1
D5 SYNC Input/digital Synchronization for wake input
D8 SPI CSN Input/digital Chip select pin for SPI communication
D9 PWM 3 Input/PWM Input PWM for Phase 2
D11 SPI SDI Input/digital Serial Data Input from Microcontroller to TLE
D12 SPI SDO Output/digital Serial Data Output from TLE to Microcontroller
D13 SPI CLK Input/digital SPI Clock

10 Chapter 3. License

Motor System IC TLE956x

3.4.3 Jumper Settings

For plug & play operation with the provided example code, it’s recommended to set the default jumpers:

Jumper Default Function
J1 None Connect D0 and D1 with LIN transceiver
J3 None (only

in-/output)
In and output of the high speed CAN transceiver

P1 set Connect RESET of Arduino with RSTN of TLE5962
P2 set Connect the INTN pin of TLE9562 with a pulldown to GND. This enables software

development mode.
P3 set Connect green LED with VCC1 of TLE9562 indicating chip is powered on
P4 None (only out-

put)
Output of remaining High-Side-Switches HSS1 and HSS2.

P5 set Connect VIN of Arduino with 5V regulator on TLE9562 shield
P6 None Connect the PWM1 pin of TLE9562 with a pulldown to GND. This enables CRC.

For more information refer to the DC motor shield user manual and TLE9562-3QX Datasheet.

3.5 Library Architecture

The TLE956x Motor System IC library follows the architecture pattern shown in the stack diagram:

The monolithic core library can be universally integrated across any low level peripheral drivers, embedded operating
system, and middleware of each software framework.

3.5. Library Architecture 11

https://www.infineon.com/cms/en/product/evaluation-boards/dc-shield_tle956x/#!?fileId=5546d46273a5366f0173fb81140a3b77
https://www.infineon.com/cms/en/product/power/motor-control-ics/brushed-dc-motor-driver-ics/dc-motor-system-ics/tle9562-3qx/#!?fileId=5546d4627883d7e00178ca35b1603873

Motor System IC TLE956x

The reusability and interoperability is achieved by defining a Platform Abstraction Layer (PAL) interface which is
implemented by each framework for its specific hardware abstraction layer and operating system resources APIs.

Additionally, the core library API is accommodated and adapted to the particularities of each software framework. The
framework API wrappers intend to harmonize the core library API with that of the software development framework
in which it is integrated, making it easier for the users already familiarized with the development framework.

The support for the multiple hardware platforms is then provided by each development framework.

The specific TLE956x Motor System IC library modules are depicted more specifically below:

In the next sections, the information of the main architecture modules for the TLE956x Motor System IC library is
extended.

3.5.1 Core Library

The core library contains all the library logic and high level functionalities of the gTLE956x Motor System IC peripheral
. The core library remains C++ agnostic by interacting with the specific platform (and framework) through a Platform
Abstraction Layer interface. Almost no other dependencies than standard C/C++ modules and the PAL are found in
these sources, only the Serial.print() is an Arduino specific command that is still needed for error communication.

There is one base class that is necessary for all applications with this chip:

class Tle9xxx
Subclassed by Tle9562, Tle9563

There are two derived classes, that represent a specific version of the chip.

class Tle9562 : public Tle9xxx

class Tle9563 : public Tle9xxx

Furthermore there are classes for each board available, that use instances of the TLE9562 / TLE9563 classes.

12 Chapter 3. License

Motor System IC TLE956x

class DCMcontrol
Subclassed by DCMcontrolIno

class BLDCMcontrol
Subclassed by BLDCMcontrolIno

These classes are then derived to be specific for Arduino UNO. Here nothing but the pin definition will happen:

class DCMcontrolIno : public DCMcontrol

class BLDCMcontrolIno : public BLDCMcontrol

These code sources can be found under “src/corelib”.

3.5.2 Platform Abstraction Layer (PAL) Interface

The Platform Abstraction Layer Interface is implemented via abstract C++ classes declaring all the necessary platform
resources and functionalities that need to be provided by the specific framework-platform implementation.

The simple BLDCMcontrol specifies in its PAL modules an ADC class, a GPIO class, and a Timer class. Its imple-
mentation is located in the “src/pal” folder.

3.5.3 Framework PAL

The PAL interfaces is defined for each embedded software framework through its low level peripheral drivers and
operating system resources APIs. The ADC, GPIO and Timer interface abstract classes are inherited and defined in
this layer.

The “src/framework/sample_fmwk/pal” folder contains the pal implementation for the particular framework.

Find more information about the supported software development frameworks in the Software Frameworks section.

3.5.4 Framework API Wrapper

The idea behind this layer is to adapt the library in order to comply with the programming conventions of the integrated
programming framework or ecosystem.

Operating system libraries, low level driver of hardware peripherals (digital input/outputs, PWM, analog conversion,
etc.) or other middleware resources are implemented for each development framework following certain patterns for
functions, parameters, and primitive types.

At these level, certain platform functionalities can be already defined and adapted to the API available resources:
functions prototypes, framework core libraries, low level driver HAL, programming patterns, and even framework feel
and look aspects.

The frameworks wrapper API files and pin configuration are located in the “src/framework/sample_fmwk/wrapper”
folders.

Find more information about each software development frameworks API in the Software Frameworks section.

3.5. Library Architecture 13

Motor System IC TLE956x

3.5.5 Predefined Hardware Platforms

Given a particular hardware platform and development software framework, most of the resources and its configuration
can be already determined by default. This part of the framework API just define some pre configured instances for
common and officially supported evaluation kits based configuration.

These instances are available in the “src/framework/sample_fmwk/wrapper/zzz-platf-xxx.hpp/cpp” source files.

3.6 Porting Guide

Porting the library to a new software development framework and hardware platform entails the implementation of the
corresponding ADC, GPIO and Timer PAL classes. In the following sections, some additional explanations and hints
are provided:

3.6.1 Framework PAL Implementation

Implement the abstract PAL interface for you framework. The ADC class, GPIO class and Timer class are mandatory.

The Doxygen comments on the “src/pal/adc.hpp”, “src/pal/gpio.hpp” and “src/pal/timer.hpp” describe the required
behavior of each function of the PAL Interface.

Consider the existing framework implementations as reference examples for you design:
“/src/framework/sample_fmwk/pal”. Some of the functions are optional depending on your framework and
intended usage of the library.

That is the case of init() and deinit(), which take care of the hardware peripherals init/deinitialization. If this is done in
your main application (or somewhere else outside the library), there is no need of delegating such initialization to the
High-side Switch library. The definition of these functions can just be a return with the success return code.

3.6.2 Framework API Wrapper

The framework API wrapper implementation is optional, it is meant to ease the usage. Mostly the main help is to avoid
the creation of the ADC, GPIO and Timer object instances for the developer.

To illustrate this approach, it is easier to evaluate a concrete implementation of the Arduino wrapper. For example have
a look in “src/corelib/DCM-control.cpp”:

pwmA->ADCWrite(_DutyCycle);
pwmB->ADCWrite(_DutyCycle);

is wrapped for Arduino like this:

analogWrite(ARDUINO_UNO.PWM_U, _DutyCycle);
analogWrite(ARDUINO_UNO.PWM_V, _DutyCycle);

using this instantiation in “src/DCM-control-ino.cpp”:

DCMcontrol::pwmA = new ADCIno(ARDUINO_UNO.PWM_U);
DCMcontrol::pwmB = new ADCIno(ARDUINO_UNO.PWM_V);

DCMcontrol::timer = new TimerIno();

14 Chapter 3. License

Motor System IC TLE956x

where the pin configuration is stored it the ARDUINO_UNO struct in “src/framework/arduino/wrapper”.

While it does not seems to simplify much in number of arguments, an Arduino developer can simply pass the pin
number as argument, and does not need to deal with the (probably unknown) GPIO classes, neither specify further
GPIO configuration as the mode (input, output, pull-up..), positive/negative logic, etc in the core library.

For each ecosystem and framework, any other criteria can be chosen, hopefully matching as well its code conventions,
implementation principles and paradigms.

3.7 Adaptive Gate Control (AGC)

The Infineon’s Motor System ICs (TLE956x) and Multi MOSFET driver ICs (TLE9210x) include a MOSFET driver
with multi-stage current source gate control which is configured over SPI. Over this interface, the turn-on (tDONx)
and turn-off (tDOFFx) delay can be controlled in PWM operation, as well as the rise (tRISEx) and fall (tFALLx)
times. Therefore the algorithms explained in Rise fall time regulation with current source MOSFET gate drivers were
implemented in this library.

3.7.1 Example codes

There are two software examples available, that directly execute the regulation like shown in the animated GIF.

• /examples/TLE9562_DCM_rise-and-fall-time-regulation.ino for use with DC motors and static loads

• /examples/TLE9563_BLDCM_rise-and-fall-time-regulation.ino for use with BLDC motors

For optimal results it’s recommended to use TLE9562_DCM_rise-and-fall-time-regulation.ino with an ideal R-L-
Load instead of a real motor to avoid side effects. This code can be used on both TLE956x boards despite the specific
name.

#define HALFBRIDGE PHASE1 // [PHASE1;Phase4] Select the phase on which␣
→˓you want to regulate Rise/Fall time
#define SPEED_INCREASE_STEP 100 // [1;511] speed step increase/decrease when␣
→˓pressing a key
#define CONTROL_LOOP_DELAY 400 // [ms] time between regulation executions

First choose the phase on which you want to apply the AGC algorithm.

enum Tle9xxx::_Halfbridges
Values:

enumerator PHASE1

enumerator PHASE2

enumerator PHASE3

enumerator PHASE4

All other phases will be always connected to ground. In practice it’s usually sufficient to execute the algorithm on one
phase, as the other MOSFETS should meet the same specifications and come from the same charge.

uint8_t trise_tg = 11; // [0;63] Initial Risetime target. Can be␣
→˓changed via keyboard input.
uint8_t tfall_tg = 11; // [0;63] Initial Falltime target. Can be␣
→˓changed via keyboard input. (continues on next page)

3.7. Adaptive Gate Control (AGC) 15

https://www.infineon.com/cms/en/product/power/motor-control-ics/bldc-motor-driver-ics/bldc-motor-system-ics/tle9563-3qx/#!?fileId=5546d46272e49d2a0172eaac3c9b72fb
https://github.com/Infineon/motor-system-ic-tle956x/tree/master/examples/TLE9562_DCM_rise-and-fall-time-regulation
https://github.com/Infineon/motor-system-ic-tle956x/tree/master/examples/TLE9563_BLDCM_rise-and-fall-time-regulation

Motor System IC TLE956x

(continued from previous page)

Here you can define your initial target Rise- and Falltime, which will be set by

void DCMcontrol::setTrisefallTarget(uint8_t trise_tg, uint8_t tfall_tg)
Set the T_Rise and T_Fall target times where the regulation loop should go to.

Parameters

• trise_tg – rise time target [0;63]

• tfall_tg – fall time target [0;63]

If this function is not used (like in normal motor operation) the values from the defines will be taken as described
below. The entered values in the examples are suited as a starting point for the DC and BLDC shield. However if other
MOSFETS are used, refer to the TLE9560/1/2 Gate Driver Setting Guide in order to estimate start values for rise and
fall times, turn-on and turn-off delay times and recommendations for the settings of the cross-current protection time
and of the blank times.

void DCMcontrol::riseFallTimeRegulation(uint8_t hb, uint8_t *iCharge, uint8_t *iDischarge, uint8_t
*risetime, uint8_t *falltime)

reads out the actual MOSFET rise-time (fall-time) and compares it to the desired rise-(fall-)time. The algorithm
then adjusts the charge current ICHG for the active MOSFET of the selected halfbridge.

Parameters

• hb – on which halfbridge should the algorithm be applied. Must be the same halfbridge
where the PWM is routed to.

• risetime – hands over the actual rise-time

• falltime – hands oder the actual fall-time

This function executes the algorithm one time and hands over the variables to read back the actual rise- / falltimes and
charge-/discharge currents.

3.7.2 Parameter defines

In order to constantly change the initial charge current (ICHG) / initial discharge current (IDCHG) go to
/src/corelib/TLE9xxx.hpp. There you find the defines listed below. Just replace the values there by the values you
found out experimentally.

CONF_TRISE_TG
[0;63] initial Target tRISE (CONF_TRISE_TG * 53.3 ns). The variable can be changed afterwards.

CONF_INIT_ICHG
[0;63] Starting charge current that will be first used by the algorithm

CONF_TFALL_TG
[0;63] initial Target tFALL (CONF_TFALL_TG * 53.3 ns). The variable can be changed afterwards.

CONF_INIT_IDCHG
[0;63] Starting discharge current that will be first used by the algorithm

16 Chapter 3. License

https://www.infineon.com/cms/en/product/power/motor-control-ics/brushed-dc-motor-driver-ics/dc-motor-system-ics/#!?fileId=5546d4627956d53f01798df9937b0af2
https://github.com/Infineon/motor-system-ic-tle956x/blob/master/src/corelib/TLE9xxx.hpp

Motor System IC TLE956x

3.8 BLDC Motor Tuning

If you have no or bad startup behavior with your BLDC motor, there are some parameters outside the example sketches
that you can change. Therefore navigate to /src/corelib/BLDCM-control.hpp in your local library.

3.8.1 Safety

CONF_TIMEOUT
Main place to configure BLDC motor parameters. All defines beginning with “CONF_” are intended to be
changed by the user. All other defines should remain as they are. milliseconds. How long no commutation may
occur until it can be assumed, the motor got stuck

In order to prevent damage to your motor when it’s mechanically blocked, there is a timeout feature. After this time
(500ms) when no commutation occurred, all three phases will be switched off.

3.8.2 RPM Regulation

CONF_PI_UPDATE_INTERVAL
milliseconds. How often should the PI regulator be called. Affects precision if too low.

3.8.3 Startup

CONF_RPM_DUTYCYCLE_AT_START
dutycycle when motor starts to turn before RPM controller will be switched on

CONF_OPEN_LOOP_DUTYCYCLE
dutycycle for blind commutation at motor start (open loop)

CONF_OPEN_LOOP_DELAY_START
microseconds. This is the delay between the first commutations when starting a BLDC motor

CONF_OPEN_LOOP_DELAY_LIMIT
microseconds. The smallest delay that is used before open loop commutation turns into closed loop

CONF_OPEN_LOOP_DELAY_SLOPE
microseconds. The amount CONF_OPEN_LOOP_DELAY_START will be decreased every open loop commu-
tation. You can calculate the amount: O_L_commutations = (5000-1200)/200

3.9 Arduino Getting Started

3.9.1 Arduino Compatible Kits

This library is designed for multiple platforms with Arduino Uno compatible headers and different SDKs. The following
hardware platforms are compatible and tested:

3.8. BLDC Motor Tuning 17

https://github.com/Infineon/motor-system-ic-tle956x/blob/master/src/corelib/BLDCM-control.hpp

Motor System IC TLE956x

Hardware Platform Type SDK File Marker Checked
Arduino Uno Rev3 Arduino IDE *.ino yes
Infineon XMC XMC4700 Relax Kit Arduino IDE *.ino yes
Infineon XMC XMC1100 Boot Kit Arduino IDE *.ino yes

Other MCU platforms which have an Arduino port may not work, as high frequency PWM (30kHz) is required on pins
3, 9 and 10 what is not available on all boards. Second limitation is the SPI bound to pins 11 (MOSI), 12 (MISO) and
13 (SCK) what is only available on the UNO and XMC boards. However if you wire it manually, the shield might work
on more MCUs.

XMC for Arduino

3.9.2 Arduino Library Installation

Required Software

1. Install the Arduino IDE. If you are new to Arduino, please download the program and install it first.

2. Include the XMC boards in the IDE (if a XMC is used). The official Arduino boards are already available
in the Arduino IDE, but other third party boards as the Infineon XMC MCU based ones need to be explicitly
included. Follow the instructions in the link to add the XMC board family to the Arduino IDE.

3. Install the library. In the Arduino IDE, go to the menu Sketch > Include library > Library Manager. Type
motor system IC TLE956x and install the library.

Installation Methods

The library can be installed in several ways:

• Arduino IDE library manager

• Arduino IDE import .zip library

• Arduino IDE manual installation

These installation processes are conveniently described on the official Arduino website.

• Arduino IDE Library Manager

Library name: motor system IC TLE956x

• Arduino IDE Manual Installation

Download the desired .zip library version from the repository releases section.

Warning: As a general recommendation, downloading directly from the master branch should be avoided. Even
though it should not, it could contain incomplete or faulty code.

18 Chapter 3. License

https://store.arduino.cc/arduino-uno-rev3
https://github.com/Infineon/XMC-for-Arduino
https://www.arduino.cc/en/Main/Software
https://github.com/Infineon/XMC-for-Arduino#installation-instructions
https://www.arduino.cc/en/guide/libraries
https://github.com/Infineon/motor-system-ic-tle956x/releases

Motor System IC TLE956x

3.9.3 Arduino API

Example TLE9562_DCM-control

Here we go through each function and variable used in this sketch and show up other control possibilities.

void setup()

Include the library and create an instance of the class DCMcontrolIno:

#include <Arduino.h>
#include <DCM-control-ino.hpp>

#define MOTOR_OUTPUT 3 // [1;3]
#define SPEED_INCREASE_STEP 100 // [1;511] speed step increase/decrease␣
→˓when pressing a key

uint16_t speed = 400;
uint8_t direction = 0;

// Create an instance of DCMcontrol called 'MyMotor'.
DCMcontrolIno MyMotor = DCMcontrolIno();

The MOTOR_OUTPUT define is used to configure which motor will be controlled according to the table below. Motor
1 has to be wired to PHASE1 and PHASE2, Motor 2 to PHASE3 and PHASE4.

MOTOR_OUTPUT Motor 1 Motor 2
1 yes no
2 no yes
3 yes yes

The not-controlled motor will always keep its last state.

Now set up a GPIO interrupt routine bound to Pin 2 (the interrupt Pin of the TLE956x shield). By default, the library
configures the TLE to throw an interrupt if an error in one or more status register occurs:

// Enable GPIO interrupt for pin 2
attachInterrupt(digitalPinToInterrupt(2), TLEinterrupt, LOW);

When you jump to the last lines in the example sketch, you see, the TLEinterrupt function only sets the variable
interrupt_status_changed to one. Just keep that in mind for now, we come to the reason later on.

Important note: In order to use the interrupt function properly, make sure the HSS switch of the board is in position
Static. Otherwise the interrupt is bound to the PWM of HSS1 and thus called periodically, if this HSS is used.

3.9. Arduino Getting Started 19

Motor System IC TLE956x

Next initialize the pins and configure the interrupt mask (which TLE956x-errors cause an error message on the serial
monitor). The default settings will be applied. The TLE9562 DC motor shield also features two red LEDs that can be
controlled individually by using two HSS outputs of the TLE9562. Using the setLED() function, the brightness of both
LEDs can be set using a 10-bit value:

MyMotor.begin();
MyMotor.configDCshield();
MyMotor.setLED(0,100); // Switch on LED 2

At the end of the setup() function, the initial set speed and direction for the selected motor(s) will be applied to the
shield:

MyMotor.setDCspeed(speed, direction, MOTOR_OUTPUT);
MyMotor.startDCM();

void loop()

In order to change speed, direction, motor outputs, start or stop the motor, an if-routine has been implemented, that
scans the Serial-input line. Have a look in Keyboard commands to see which key to press:

if (Serial.available() > 0)
{

uint8_t in = Serial.read();
if(in == '+')
{
speed += SPEED_INCREASE_STEP;
Serial.println(speed);
}
if(in == '-')
{
speed -= SPEED_INCREASE_STEP;
Serial.println(speed);
}
if(in == 'd')
{
direction = 0;
Serial.println(F("forward"));
}
if(in == 'e')

(continues on next page)

20 Chapter 3. License

Motor System IC TLE956x

(continued from previous page)

{
direction = 1;
Serial.println(F("backward"));
}
if(in == 'a')
{
MyMotor.stopDCM(BRAKEMODE_PASSIVE);
Serial.println(F("Motor stopped"));
}
if(in == 'q')
{
MyMotor.startDCM();
Serial.println(F("Motor started"));
}

MyMotor.setDCspeed(speed, direction, MOTOR_OUTPUT);
}

If a key was pressed, the changes will be applied to the board using the setDCspeed(speed, direction, MO-
TOR_OUTPUT) function again.

Example TLE9563_BLDCM-control

Here we go through each function and variable used in this sketch and show up other control possibilities.

void setup()

Include the library and create an instance of the class BLDCMcontrolIno:

#include <Arduino.h>
#include <BLDCM-control-ino.hpp>

uint16_t speed = 400;
uint8_t direction = 0;
uint8_t weakening = 0;

// Create an instance of BLDCMcontrolIno called 'MyMotor'.
BLDCMcontrolIno MyMotor = BLDCMcontrolIno();

Set up a GPIO interrupt routine bound to Pin 2 (the interrupt Pin of the TLE956x shield). By default, the library
configures the TLE to throw an interrupt if an error in one or more status register occurs:

// Enable GPIO interrupt for pin 2
attachInterrupt(digitalPinToInterrupt(2), TLEinterrupt, LOW);

When you jump to the last lines in the example sketch, you see, the TLEinterrupt function only sets the variable
interrupt_status_changed to one. Just keep that in mind for now, we come to the reason later on.

Important note: In order to use the interrupt function properly, make sure the HSS switch of the board is in position
Static. Otherwise the interrupt is bound to the PWM of HSS1 and thus called periodically, if this HSS is used (e.g. the
green LED is on).

3.9. Arduino Getting Started 21

Motor System IC TLE956x

Motor control functions

First, we need to call the begin() function, that configures all input/output pins, PWM frequencies and so on. The
function setLED(red, green, blue) let us set the color of the onboard RGB-LED, driven by the high-side-switches of
the TLE. It takes 10-bit values as argument, so you can enter values from 0 (off) to 1024 (max brightness). Make sure
your HSS-jumpers are in place.

MyMotor.begin();
MyMotor.setLED(0,20,0);

Now comes the important part: You need to select which position-feedback and which speedmode you want to use:

MyMotor.MotorParam.feedbackmode = BLDCMcontrol::BLDC_HALL;
MyMotor.MotorParam.speedmode = BLDCMcontrol::BLDC_BLDC_DUTYCYCLE;
MyMotor.MotorParam.MotorPolepairs = 4;

MotorParam type arguments input range
feedbackmode mandatory BLDC_HALL

BLDC_BEMF
speedmode mandatory BLDC_DUTYCYCLE 0 - 1023

BLDC_RPM 0- 2E32
MotorPolepairs mandatory for BLDC_RPM integer value 0-255
PI_reg_P optional (default = 0.01) float value
PI_reg_I optional (default = 0.01) float value

If you don’t know the amount of pole-pairs in your BLDC, you can use the find_polepairs_BLDCM.ino sketch provided
in the examples folder. If you use a wrong number, your actual RPM-speed might be imprecise.

In order to actually set the previous defined parameters, call the following function:

MyMotor.configBLDCshield();

Finally, we can set our default speed and direction and start the BLDC motor:

MyMotor.setBLDCspeed(speed, direction);
MyMotor.startBLDCM();

Depending on your configuration above, the speed - parameter will be interpreted as a percentage-value (a permil-
value to be precise) or as a desired RPM-speed. direction can be 0 or 1. A third argument weakening range would be

22 Chapter 3. License

Motor System IC TLE956x

possible as well that can be 0 (default) or 1, but is only applicable if BLDC_HALL was selected. weakening range uses
a different commutation pattern, that let’s the motor turn with its double speed but less torque.

startBLDCM() applies an open-loop commutation to your motor and enables the usage of serveBLDCshield() which
actually commutates the motor.

void loop()

In order to change speed, direction, weakening range (only for BLDC_HALL), start or stop the motor, an if-routine has
been implemented, that scans the Serial-input line. Have a look in Keyboard commands to see which key to press:

if (Serial.available() > 0)
{

uint8_t in = Serial.read();
if(in == '+'){
speed += SPEED_INCREASE_STEP;
Serial.println(speed);}
if(in == '-'){
speed -= SPEED_INCREASE_STEP;
Serial.println(speed);}
if(in == 'd'){
direction = 0;
Serial.println(F("forward"));}
if(in == 'e'){
direction = 1;
Serial.println(F("backward"));}
if(in == 's'){
weakening = 0;
Serial.println(F("Field weakening disabled"));}
if(in == 'w'){
weakening = 1;
Serial.println(F("Field weakening enabled"));}
if(in == 'a'){
MyMotor.stopBLDCM(BRAKEMODE_PASSIVE);
Serial.println(F("Motor stopped"));}
if(in == 'q'){
MyMotor.startBLDCM();
Serial.println(F("Motor started"));}
MyMotor.setBLDCspeed(speed, direction, weakening);

}

For example, if you press a, the function stopBLDCM(brakemode) is called. As the name says, it stops the commutation
and prohibits the use of serveBLDCshield(), where brakemode defines, wether the phases are left floating (BRAKE-
MODE_PASSIVE) or actively tied to ground (BRAKEMODE_ACTIVE). The F() function which wraps the strings in
the serial prints is called the F-macro and helps to save dynamic memory.

Last but not least, you may not forget to call the most important function, where all the magic happens: serveBLDC-
shield()

Depending on the previously defined configuration, this function checks, if the hall-sensor or BEMF-sensor state
changed since the last time the function was called and if so, it commutates the output phases. This means, this function
needs to be called as often as possible and the time between calling this function must be as short as possible.

3.9. Arduino Getting Started 23

Motor System IC TLE956x

MyMotor.serveBLDCshield(); // MUST BE CALLED HERE. This function does the␣
→˓BLDC commutation.
if(MyMotor.checkTLEshield()) // Check, if interrupt flag was set and read␣
→˓status register of TLE
{

MyMotor.setLED(50,0,0); // Set onboard RGB-LED to red.
}

The function checkBLDCshield() is not mandatory to run the BLDC, but handles error codes and prints debug mes-
sages. If you remind the interrupt setting at the beginning, I can now tell you, this function will only be executed if
interrupt_status_changed was set to 1.

3.9.4 Arduino Examples

To run these examples use either the Arduino IDE or something similar like the PlatformIO extension for Visual Code
or Atom.

examples/TLE9562_DCM-control Default example sketch to run DC motors.
examples/TLE9562_DCM_rise-and-fall-
time-regulation

Perform the rise- / falltime control loop on a single output phase.

examples/TLE9563_BLDCM-control Default example sketch to run a 3 Phase BLDC motor with Hallsensor
or BEMF.

examples/TLE9563_BLDCM_rise-and-
fall-time-regulation

Perform the Rise- / Falltime control loop while controlling a BLDC
motor. Might be experimental.

examples/TLE9563_BLDCM_find-
polepairs

Simple script to identify the amount of polepairs of a connected BLDC
motor.

Keyboard commands

These are common key-operations for the serial monitor used by the various examples stated above. Not all operations
are available in every example.

Up / Enable Down / Disable
Speed + -
Motor enable q a
Weakening Range enable (BLDCM) w s
Direction e d
Risetime target r f
Falltime target t g
Rise- / Falltime Regulation enable u j
AGC enable i k

24 Chapter 3. License

https://github.com/Infineon/motor-system-ic-tle956x/tree/master/examples/TLE9562_DCM-control
https://github.com/Infineon/motor-system-ic-tle956x/tree/master/examples/TLE9562_DCM_rise-and-fall-time-regulation
https://github.com/Infineon/motor-system-ic-tle956x/tree/master/examples/TLE9562_DCM_rise-and-fall-time-regulation
https://github.com/Infineon/motor-system-ic-tle956x/tree/master/examples/TLE9563_BLDCM-control
https://github.com/Infineon/motor-system-ic-tle956x/tree/master/examples/TLE9563_BLDCM_rise-and-fall-time-regulation
https://github.com/Infineon/motor-system-ic-tle956x/tree/master/examples/TLE9563_BLDCM_rise-and-fall-time-regulation
https://github.com/Infineon/motor-system-ic-tle956x/tree/master/examples/TLE9563_BLDCM_find-polepairs
https://github.com/Infineon/motor-system-ic-tle956x/tree/master/examples/TLE9563_BLDCM_find-polepairs

Motor System IC TLE956x

3.9.5 Software

1. Follow the instructions in Arduino Library Installation to install the required software and libraries.

2. Choose a suitable example sketch and upload the code to your Arduino.

3.9.6 Hardware

1. Connect your shield to a Microcontroller board supported by this library.

2. Set some jumpers on the board like explained here

3. Connect your motor(s) to the screw terminals.

4. Connect a 12V DC power supply with current limitation.

3.9.7 Ready!

Switch on the power supply and control your motor(s) with the serial monitor in the Arduino IDE. Refer to Arduino
API and Keyboard commands for more details on how to use the example sketches.

3.9. Arduino Getting Started 25

Motor System IC TLE956x

26 Chapter 3. License

INDEX

B
BLDCMcontrol (C++ class), 13
BLDCMcontrolIno (C++ class), 13

C
CONF_INIT_ICHG (C macro), 16
CONF_INIT_IDCHG (C macro), 16
CONF_OPEN_LOOP_DELAY_LIMIT (C macro), 17
CONF_OPEN_LOOP_DELAY_SLOPE (C macro), 17
CONF_OPEN_LOOP_DELAY_START (C macro), 17
CONF_OPEN_LOOP_DUTYCYCLE (C macro), 17
CONF_PI_UPDATE_INTERVAL (C macro), 17
CONF_RPM_DUTYCYCLE_AT_START (C macro), 17
CONF_TFALL_TG (C macro), 16
CONF_TIMEOUT (C macro), 17
CONF_TRISE_TG (C macro), 16

D
DCMcontrol (C++ class), 12
DCMcontrol::riseFallTimeRegulation (C++ func-

tion), 16
DCMcontrol::setTrisefallTarget (C++ function),

16
DCMcontrolIno (C++ class), 13

T
Tle9562 (C++ class), 12
Tle9563 (C++ class), 12
Tle9xxx (C++ class), 12
Tle9xxx::_Halfbridges (C++ enum), 15
Tle9xxx::_Halfbridges::PHASE1 (C++ enumera-

tor), 15
Tle9xxx::_Halfbridges::PHASE2 (C++ enumera-

tor), 15
Tle9xxx::_Halfbridges::PHASE3 (C++ enumera-

tor), 15
Tle9xxx::_Halfbridges::PHASE4 (C++ enumera-

tor), 15

27

	BLDC Motor Shield with TLE9563
	DC Motor Shield with TLE9562
	License
	Acronyms
	Related Links
	Related Products
	Related Repositories
	More

	BLDC Motor Shield with TLE9563
	Pinout Diagram
	Pin Description
	Jumper settings

	DC Motor Shield with TLE9562
	Pinout Diagram
	Pin Description
	Jumper Settings

	Library Architecture
	Core Library
	Platform Abstraction Layer (PAL) Interface
	Framework PAL
	Framework API Wrapper
	Predefined Hardware Platforms

	Porting Guide
	Framework PAL Implementation
	Framework API Wrapper

	Adaptive Gate Control (AGC)
	Example codes
	Parameter defines

	BLDC Motor Tuning
	Safety
	RPM Regulation
	Startup

	Arduino Getting Started
	Arduino Compatible Kits
	Arduino Library Installation
	Required Software
	Installation Methods

	Arduino API
	Example TLE9562_DCM-control
	void setup()
	void loop()

	Example TLE9563_BLDCM-control
	void setup()
	Motor control functions
	void loop()

	Arduino Examples
	Keyboard commands

	Software
	Hardware
	Ready!

	Index

